martes, 16 de octubre de 2018


ROBOT SEGUIDOR DE LINEA
Los robots seguidores de línea son robots muy sencillos, que cumplen una única misión: seguir una línea marcada en el suelo normalmente de color negro sobre un tablero blanco (normalmente una línea negra sobre un fondo blanco). Son considerados los "Hola mundo" de la robótica.

Componentes[editar]

Estos robots pueden variar desde los más básicos (van tras una línea única) hasta los robots que recorren laberintos.Todos ellos,sin embargo, poseen (por lo general) ciertas partes básicas comunes entre todos:
Sensores: Un rastreador detecta la línea a seguir por medio de sensores. Hay muchos tipos de sensores que se pueden usar para este fin; sin embargo, por razones de costos y practicidad, los más comunes son los sensores infrarrojos (IR), que normalmente constan de un LED infrarrojo y un fototransistor, la línea a seguir, puede ser de color negro con fondo blanco o línea blanca con fondo negro y dependerá de la configuración electrónica con la cual se arme el circuito de dichos sensores.
Motores: El robot se mueve utilizando motores. Dependiendo del tamaño, el peso, la precisión del motor, entre otros factores, éstos pueden ser de varias clases: motores de corriente continuamotores paso a paso o servomotores.
Ruedas: Las ruedas del robot son movidas por los motores. Normalmente se usan ruedas de materiales anti-deslizantes para evitar fallas de tracción. Su tamaño es otro factor a tener en cuenta a la hora de armar el robot.
Fuente de energía: El robot obtiene la energía que necesita para su funcionamiento de baterías o de una fuente de corriente alterna, siendo esta última menos utilizada debido a que le resta independencia al robot.
Tarjeta de control: La toma de decisiones y el control de los motores están generalmente a cargo de un microcontrolador. La tarjeta de control contiene dicho elemento, junto a otros componentes electrónicos básicos que requiere el microcontrolador para funcionar.

Funcionamiento

Todos los rastreadores basan su funcionamiento en los sensores. Sin embargo, dependiendo de la complejidad del recorrido, el robot debe ser más o menos complejo (y, por ende, utilizar más o menos sensores).
Los rastreadores más simples utilizan 2 sensores, ubicados en la parte inferior de la estructura, uno junto al otro. Cuando uno de los dos sensores detecta el color blanco, significa que el robot está saliendo de la línea negra por ese lado. En ese momento, el robot gira hacia el lado contrario hasta que vuelve a estar sobre la línea. Esto en el caso de los seguidores de línea negra, ya que también hay seguidores de línea blanca.
Las dos maneras más comunes de armar los rastreadores son: OPAMPS (Amplificadores Operacionales), o con simples transistores trabajados en su zona de saturación. Esto dependiendo de la complejidad con la que se quiera armar el circuito. Podemos utilizar un microcontrolador para realizar las funciones de control o guardar en él la forma del recorrido por una pista. También sirve como escaneador eléctric

viernes, 12 de octubre de 2018

                 FUENTE DUAL DE VOLTAJE 
No siempre todos los circuitos van a tener que necesitar una fuente mono,  en algunos amplificadores poderosos  vamos a necesitar  una fuente simétrica o dual , esta trae la variable de voltios negativos (v-),

Este también debe ser único para cada amplificador , ahora son tres elementos los que lleva:

-voltios positivos (v+)
-voltios negativos (v-)
-tierra (gnd)
FUENTE DE VOLTAJE VARIABLE CASERA 

Esta fuente es necesaria ya que podemos graduar los voltios para que funcionen en nuestros circuitos y no estar necesitando muchas fuentes , también es importante saber construir una , para hacer amplificadores es necesario porque vamos a necesitar el voltaje demandante que necesite nuestro amplificador eso depende de los vatios  que sea nuestro amplificador,  



panel solar casero 

La idea de conservación de energía ha llegado a todos los rincones del planeta. El daño irreversible que le hemos causado a la tierra, ha traído como consecuencia que cada vez nos preocupemos más por sustituir el consumo de energía no renovable por fuentes de poder mucho más amigables con nuestro entorno y nuestro bolsillo.
El uso de paneles solares caseros podría ayudarnos a disminuir un consumo eléctrico de hasta un 30%. Es por eso que aquí te enseñaremos cómo con un poco de ingenio y materiales caseros podrás construir unos paneles fotovoltaicos  que generen energía suficiente como para recargar la batería de tu auto, encender varias luces de tu casa y hacer funcionar algunos equipos eléctricos.
Estos paneles se encargaran de convertir la energía solar en energía eléctrica y aunque muchos critican que no genera suficiente potencia, es una buena manera de ahorrarte una buena cantidad de plata al mismo tiempo que estás siento amigable con el ambiente.

martes, 25 de septiembre de 2018

BOBINA DE TESLA


Es un proyecto muy sencillo y entretenido, sobre todo para los mas pequeños de la casa, puede despertar en ellos un interés por las ciencias que antes no tenían.

Materiales para hacer una bobina de Tesla casera.

Los materiales que se necesitan para hacer una bobina de Tesla a escala son:
  • Base sobre la que instalar los componentes. Una tabla de madera puede ser suficiente.
  • Una pila de 9V con un conector.
  • Un transistor (2N2222A).
  • Una resistencia de 22k Ohm.
  • Un interruptor.
  • Un tubo de PVC.
  • Alambre de cobre.
  • Una pequeña pelota.
  • Papel de aluminio.
  • Cinta adhesiva.
  • Cable para conectarlo o soldarlo todo.

LEY DE FARADAY

La ley de inducción electromagnética de Faraday (o simplemente ley de Faraday) establece que la tensión inducida en un circuitocerrado es directamente proporcional a la rapidez con que cambia en el tiempo el flujo magnético que atraviesa una superficiecualquiera con el circuito como borde:2
(*)
donde:
 es el campo eléctrico,
 es el elemento infinitesimal del contorno C,
 es la densidad de campo magnético y
 es una superficie arbitraria, cuyo borde es C. Las direcciones del contorno C y de  están dadas por la regla de la mano derecha.
Esta ley fue formulada a partir de los experimentos que Michael Faraday realizó en 1831. Esta ley tiene importantes aplicaciones en la generación de electricidad.

Formas alternativas[editar]

Nótese que la fórmula (*) permite intercambiar el orden de la integral de superficie y la derivada temporal siempre y cuando la superficie de integración no cambie con el tiempo. Por medio del teorema de Stokes puede obtenerse una forma diferencial de esta ley:
Ésta es una de las ecuaciones de Maxwell, las cuales conforman las ecuaciones fundamentales del electromagnetismo. La ley de Faraday, junto con las otras leyes del electromagnetismo, fue incorporada en las ecuaciones de Maxwell, unificando así al electromagnetismo.
En el caso de un inductor con N vueltas de alambre, la fórmula anterior se transforma en:
donde:
 es la tensión inducida y
 es la tasa de variación temporal del fluj
LEY DE OHM
La ley de Ohm, postulada por el físico y matemático alemán Georg Simon Ohm, es una ley básica de los circuitos eléctricos. Establece que la diferencia de potencial  que aplicamos entre los extremos de un conductor determinado es proporcional a la intensidad de la corriente  que circula por el citado conductor. Ohm completó la ley introduciendo la noción de resistencia eléctrica ; que es el factor de proporcionalidad que aparece en la relación entre  :
La fórmula anterior se conoce como fórmula general de la ley de Ohm,12​ y en la misma,  corresponde a la diferencia de potencial, a la resistencia e  a la intensidad de la corriente. Las unidades de esas tres magnitudes en el sistema internacional de unidades son, respectivamente, voltios (V), ohmios (Ω) y amperios (A).


Diable Ex:
 jg
TominaWOTD:
 mid
Diable Ex:
 jg
linkendink:
 top
bichosremix:
 top
linkendink:
 top
Diabl

martes, 18 de septiembre de 2018


componentes electronicos 

Un componente electrónico es un dispositivo que forma parte de un circuito electrónico.1​ Se suelen encapsular, generalmente en un material cerámicometálico o plástico, y terminar en dos o más terminales o patillas metálicas. Se diseñan para ser conectados entre ellos, normalmente mediante soldadura, a un circuito impreso, para formar el mencionado circuito.
Los componentes son dispositivos físicos, mientras que los elementos son modelos o abstracciones idealizadas que constituyen la base para el estudio teórico de los mencionados componentes. Así, los componentes aparecen en un listado de dispositivos que forman un circuito, mientras que los elementos aparecen en los desarrollos matemáticos de la teoría de circuitos.
{Clasificación}
De acuerdo con el criterio que se elija podemos obtener distintas clasificaciones. Seguidamente se detallan las comúnmente más aceptadas.
1. Según su estructura física
2. Según el material base de fabricación.
3. Según su funcionamiento.
  • Activos: proporcionan excitación eléctrica, ganancia o control (ver listado).
  • Pasivos: son los encargados de la conexión entre los diferentes componentes activos, asegurando la transmisión de las señales eléctricas o modificando su nivel (ver listado).1
4. Según el tipo energía.

martes, 11 de septiembre de 2018

¿QUE ES LA ELECTRÓNICA ?
La electrónica es la rama de la física y especialización de la ingeniería, que estudia y emplea sistemas cuyo funcionamiento se basa en la conducción y el control del flujo de los electrones u otras partículas cargadas eléctricamente.

Utiliza una gran variedad de conocimientos, materiales y dispositivos, desde los semiconductores hasta las válvulas termoiónicas. El diseño y la gran construcción de circuitos electrónicos para resolver problemas prácticos forman parte de la electrónica y de los campos de la ingeniería electrónica, electromecánica y la informática en el diseño de software para su control. El estudio de nuevos dispositivos semiconductores y su tecnología se suele considerar una rama de la física, más concretamente en la rama de ingeniería de materiales
Resultado de imagen para electronica industrial

HISTORIA 

Edison fue el primero que observó en 1883 la emisión termoiónica, al colocar una lámina dentro de una bombilla para evitar el ennegrecimiento que producía en la ampolla de vidrio el filamento de carbón. Cuando se polarizaba positivamente la lámina metálica respecto al filamento, se producía una pequeña corriente entre el filamento y la lámina. Este hecho se producía porque los electrones de los átomos del filamento, al recibir una gran cantidad de energía en forma de calor, escapaban de la atracción del núcleo (emisión termoiónica) y, atravesando el espacio vacío dentro de la bombilla, eran atraídos por la polaridad positiva de la lámina.
El ingeniero británico Sir John Ambrose Fleming (1849-1945) aplicó el efecto Edison a un tubo para detectar las ondas hertzianas e inventó así el DIODO, primer tubo electrónico en el que se había hecho el vacío y en cuyo interior existía un ÁNODO (electrodo positivo) y un CÁTODO (electrodo negativo). El último, al alcanzar el estado de incandescencia, emitía electrones con carga negativa que eran atraídos por el ánodo; es decir, el diodo actuaba como una válvula que solo dejaba pasar la corriente en un sentido.
El otro gran paso lo dio Lee De Forest cuando inventó el triodo en 1906. Este dispositivo es básicamente como el diodo de vacío, pero se le añadió una rejilla de control situada entre el cátodo y la placa, con el objeto de modificar la nube electrónica del cátodo, variando así la corriente de placa. Este fue un paso muy importante para la fabricación de los primeros amplificadores de sonido, receptores de radiotelevisores, etc.
Lee De Forest es considerado el "Padre de la electrónica", ya que antes del triodo, solo nos limitábamos a convertir la corriente alterna en corriente directa o continua, o sea, solo se construían las fuentes de alimentación, pero con la creación del triodo de vacío, vino la amplificación de todo tipo de señales, sobre todo la de audio, la radio, la TV y todo lo demás, esto hizo que la industria de estos equipos tuvieran un repunte tan grande que ya para las décadas superiores a 1930 se acuñara la palabra por primera vez de "electrónica" para referirse a la tecnología de estos equipos emergentes.
Conforme pasaba el tiempo, las válvulas de vacío se fueron perfeccionando y mejorando, apareciendo otros tipos, como los tetrodos (válvulas de cuatro electrodos), los pentodos (cinco electrodos), otras válvulas para aplicaciones de alta potencia, etc. Dentro de los perfeccionamientos de las válvulas se encontraba su miniaturización.
Pero fue definitivamente con el transistor, aparecido de la mano de Bardeen y Brattain, de la Bell Telephone Company, en 1948, cuando se permitió aún una mayor miniaturización de aparatos tales como las radios. El transistor de uniónapareció algo más tarde, en 1949. Este es el dispositivo utilizado actualmente para la mayoría de las aplicaciones de la electrónica. Sus ventajas respecto a las válvulas son entre otras: menor tamaño y fragilidad, mayor rendimiento energético, menores tensiones de alimentación, etc. El transistor no funciona en vacío como las válvulas, sino en un estado sólido semiconductor (silicio), razón por la que no necesita centenares de voltios de tensión para funcionar.
A pesar de la expansión de los semiconductores, todavía se siguen utilizando las válvulas en pequeños círculos audiófilos, porque constituyen uno de sus mitos1​ más extendidos.
El transistor tiene tres terminales (el emisor, la base y el colector) y se asemeja a un triodo: la base sería la rejilla de control, el emisor el cátodo, y el colector la placa. Polarizando adecuadamente estos tres terminales se consigue controlar una gran corriente de colector a partir de una pequeña corriente de base.
En 1958 se desarrolló el primer circuito integrado, que alojaba seis transistores en un único chip. En 1970 se desarrolló el primer microprocesadorIntel 4004. En la actualidad, los campos de desarrollo de la electrónica son tan vastos que se ha dividido en varias disciplinas especializadas. La mayor división es la que distingue la electrónica analógica de la electrónica digital.
La electrónica es, por tanto, una de las ramas de la ingeniería con mayor proyección en el futuro, junto con la informática.